Study of the Biosynthesis of Sterigmatocystin and Reassignment of ¹³C Nuclear Magnetic Resonance Spectrum

By KLAUS G. R. PACHLER, PIETER S. STEVN,* ROBERT VLEGGAAR, and PHILIPPUS L. WESSELS

National Chemical Research Laboratory, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria, 0001, Republic of South Africa)

Summary New ¹³C n.m.r. assignments of sterigmatocystin and their important implications on its biosynthesis are reported.

In view of the recent communication by Seto *et al.*¹ we now present our results on the ${}^{13}C$ n.m.r. assignment of sterig-matocystin (1), together with the subsequent biogenetic implications.

The ¹³C n.m.r. spectral data of (1) derived from coupled, proton-noise decoupled, and off-resonance decoupled spectra are given in the Table. Methoxy and tertiary carbon atoms have been assigned by correlating residual splittings in off-resonance decoupled spectra with proton chemical shifts. Directly bonded C-H couplings support the assignments of aromatic, olefinic and aliphatic carbon atoms. These assignments agree largely with those of Seto *et al.*¹ except for the crucial interchange of the C(4) and C(6) resonances. The resonance centred around $\delta = 111\cdot0$ shows two long-range couplings of 7 Hz, one of which is removed by exchanging the OH proton with deuterium. This clearly distinguishes C(4) from C(6), which is five bonds away from the hydroxy-proton.

Quarternary carbons have been assigned from longrange couplings, assuming that three-bond C-H couplings in aromatic systems are larger than two-bond couplings and from comparisons with chemical shifts in related compounds [dihydrosterigmatocystin, O-acetyldihydrosterigmatocystin and aflatoxin $B_1(2)^2$]. The following evidence supports the assignments different from those of Seto et al., [C(7), C(8), C(10) and C(12)]. Selectively decoupling the proton on C(5) changes the resonances at $\delta = 162 \cdot 1$ and 154.7 to a doublet of doublets (J 5 and 2 Hz) and a broad unresolved singlet, respectively. Deuterium exchange of the hydroxy-proton removes the 5 Hz coupling from the resonance at $\delta = 162 \cdot 1$. This confirms the assignments of C(3) (at $\delta = 162 \cdot 1$) and C(7) (at $\delta = 154 \cdot 7$). The complex pattern at $\delta = 163.0$ is assigned to C(12) since decoupling of the methoxy-proton changes the signal to a simple doublet $(J \ 2 \ \text{Hz})$. This assignment is also supported by Eu(fod)₃ shift experiments, the methoxy carbon atom experiences the biggest shift indicating that complexation occurs preferentially at the methoxy-group. The second biggest shift is shown by the resonance of C(12). The assignment of C(8) ($\delta = 153.7$) and C(10) ($\delta = 164.3$) follows from a comparison with the corresponding carbon atoms in aflatoxin B₁ (2) which resonate at $\delta = 153.0$ and 165.8, respectively.²

Scheme

Assignments of the three quaternary carbon atoms [C(2), C(9), and C(13)], previously not assigned,¹ were made as follows. The resonance at $\delta = 106.4$ is shifted least by Eu(fod)₃ and is therefore assigned to C(9). Acetylation of the C(3) hydroxy-group in dihydrosterigmatocystin caused the resonance at $\delta = 108.8$ C(2) to shift to lower field ($\delta =$ 115.9), thus identifying C(2). The remaining resonance at $\delta = 105.7$ in (1) was, therefore, assigned to C(13).

Biosynthetic studies on sterigmatocystin using ¹⁴C- and ¹³C-labelled acetate precursors³ have revealed the distribution of labels in the acetate derived skeleton shown in (1). Our ¹³C assignments (Table), together with the reported appearance of only one singlet¹ (δ_c 154.7, which we assigned to C(7) in the doubly labelled sterigmatocystin, as well as the reassigned reported coupling constants I (δ 135.4–105.7)

TABLE

The ¹³C chemical shifts, directly bonded (^{1}J) and long-range $(>^{1}J)$ ¹²C-¹H coupling constants of sterigmatocystin (I) in CDCl₂

Carbon	δp.p.m.ª	$^{1}J/\mathrm{Hz}$	$>^1J/\text{Hz}$
1	180-9 S		
2	108·8 S		
3	$162 \cdot 1$ Sddd		10; 5; 2
4	111.0 Dt	165	7
5	$135 \cdot 4 D$	164	
6	105.7 Dd	167	8
7	154.7 Sdd		12;3
8	153·7 S		
9	106·4 S		
10	164·3 Sdd	_	8;4
11	90·4 D	165	
12	163-0 Sqd	_	7;3
13	105.7 ± 0.3 Sb		
14	113·1 Dddd	187	9;6;3
15	47·9 Dq	146	6
16	102∙4 Dddd	181	13; 5; 2
17	145·1 Ddt	197	12; 5
OMe	56·6 Q	146	

^a Chemical shift relative to internal Me₄Si. Capital letters refer to the pattern resulting from directly bonded protons and small letters to long-range ${}^{13}C-{}^{1}H$ coupling. S = singlet, D = doublet, T = triplet, Q = quartet.

^b This resonance overlaps with that of C(6). The position was backextrapolated from a Eu(fod)₃ experiment.

58 Hz; J (δ 113·1-47·9) 34 Hz and J (δ 102·4-145·1) 76 Hz, allow only one arrangement of intact acetate units in sterigmatocystin. The ¹³C n.m.r. assignment of sterigmatocystin (1) by Seto *et al.*¹ leads to the incorrect arrangement of intact acetate units, e.g. the location of only two intact acetate units in ring 3 and furthermore to a different folding of the original polyketide (Scheme).

The above results and our recent findings² on aflatoxin B₁ (2) show that ring 3 in (1) and (2) contains three intact acetate units. A C_{18} naphthacene precursor⁴ is thus no longer tenable. Our data are in agreement with the biosynthesis from a single C20 polyketide precursor which is folded only in one mode leading to averufin and sterigmatocystin (Scheme). However, the intermediacy of a formal 'C₄-unit' which is linked in a head-to-tail fashion to a C_{14} precursor, in the biosynthesis of (1) cannot be completely excluded. The proposed C20 pathway (Scheme) is supported by recent experiments which established that averufin⁵ and sterigmatocystin⁶ can be converted very efficiently by cultures of Aspergillus parasiticus into aflatoxin B₁. In addition feeding experiments by Heathcote et al.7 have proved that 'C4-units' were very poorly incorporated into aflatoxin B₁. The unique head-to-head linkage of the two acetate units in (1) and (2) for the coupling of the dihydrofuran ring and the aromatic system can be adequately accommodated by a mechanism proposed by Thomas.⁸

(Received, 19th February 1975; Com. 209.)

¹ H. Seto, L. W. Cary, and M. Tanabe, Tetrahedron Letters, 1974, 4491.

² P. S. Steyn, R. Vleggaar, P. L. Wessels, and D. B. Scott, *J.C.S. Chem. Comm.*, 1975, 193.
³ J. S. E. Holker and L. J. Mulheirn, *J.C.S. Chem. Comm.*, 1968, 1576; M. Tanabe, T. Hamasaki, and H. Seto, *ibid.*, 1970, 1539.

⁴ M. Biollaz, G. Büchi, and G. Milne, J. Amer. Chem. Soc., 1970, 92, 1035. ⁵ M. T. Lin and D. P. H. Hsieh, J. Amer. Chem. Soc., 1973, 95, 1668.

⁶ D. P. H. Hsieh, M. T. Lin, and R. C. Yao, Biochem. Biophys. Res. Comm., 1973, 52, 992.

⁷ J. G. Heathcote, M. F. Dutton, and J. R. Hibbert, Chem. and Ind., 1973, 1027.

⁸ R. Thomas, personal communication to M. O. Moss, in 'Phytochemical Ecology,' ed. J. B. Harborne, Academic Press, London, 1972, p. 140.